Exploiting novel valve interstitial cell lines to study calcific aortic valve disease

نویسندگان

  • Hiu-Gwen Tsang
  • Lin Cui
  • Colin Farquharson
  • Brendan M. Corcoran
  • Kim M. Summers
  • Vicky E. Macrae
چکیده

Calcific aortic valve disease (CAVD) involves progressive valve leaflet thickening and severe calcification, impairing leaflet motion. The in vitro calcification of primary rat, human, porcine and bovine aortic valve interstitial cells (VICs) is commonly employed to investigate CAVD mechanisms. However, to date, no published studies have utilised cell lines to investigate this process. The present study has therefore generated and evaluated the calcification potential of immortalized cell lines derived from sheep and rat VICs. Immortalised sheep (SAVIC) and rat (RAVIC) cell lines were produced by transduction with a recombinant lentivirus encoding the Simian virus (SV40) large and small T antigens (sheep), or large T antigen only (rat), which expressed markers of VICs (vimentin and α‑smooth muscle actin). Calcification was induced in the presence of calcium (Ca; 2.7 mM) in SAVICs (1.9 fold; P<0.001) and RAVICs (4.6 fold; P<0.01). Furthermore, a synergistic effect of calcium and phosphate was observed (2.7 mM Ca/2.0 mM Pi) on VIC calcification in the two cell lines (P<0.001). Analysis of SAVICs revealed significant increases in the mRNA expression of two key genes associated with vascular calcification in cells cultured under calcifying conditions, runt related transcription factor‑2 (RUNX2;1.3 fold; P<0.05 in 4.5 mM Ca) and sodium‑dependent phosphate transporter‑1 (PiT1; 1.2 fold; P<0.05 in 5.4 mM Ca). A concomitant decrease in the expression of the calcification inhibitor matrix Gla protein (MGP) was noted at 3.6 mM Ca (1.3 fold; P<0.01). Assessment of RAVICs revealed alterations in Runx2, Pit1 and Mgp mRNA expression levels (P<0.01). Furthermore, a significant reduction in calcification was observed in SAVICs following treatment with established calcification inhibitors, pyrophosphate (1.8 fold; P<0.01) and etidronate (3.2 fold; P<0.01). Overall, the present study demonstrated that the use of immortalised sheep and rat VIC cell lines is a convenient and cost effective system to investigate CAVD in vitro, and will make a useful contribution to increasing current understanding of the pathophysiological process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valve Endothelial Cell-Derived Tgfβ1 Signaling Promotes Nuclear Localization of Sox9 in Interstitial Cells Associated With Attenuated Calcification.

OBJECTIVE Aortic valve disease, including calcification, affects >2% of the human population and is caused by complex interactions between multiple risk factors, including genetic mutations, the environment, and biomechanics. At present, there are no effective treatments other than surgery, and this is because of the limited understanding of the mechanisms that underlie the condition. Previous ...

متن کامل

Advances in Pathophysiology of Calcific Aortic Valve Disease Propose Novel Molecular Therapeutic Targets

Calcific Aortic Valve Disease (CAVD) is the most common heart valve disease and its incidence is expected to rise with aging population. No medical treatment so far has shown slowing progression of CAVD progression. Surgery remains to this day the only way to treat it. Effective drug therapy can only be achieved through a better insight into the pathogenic mechanisms underlying CAVD. The cellul...

متن کامل

Correlation Between Aortic Valve Sclerosis and Coronary Artery Disease: A Cross - Sectional Study

  Introduction: Aortic valve sclerosisis considered as a manifestation of coronary atherosclerosis. Recent studies demonstrated an association between aortic valve sclerosis and obstructive coronary artery disease. The purpose of this study was to evaluatethe correlation betweenaortic valve sclerosis andobstructive coronary artery disease and the extent of coronary artery disease in patients ho...

متن کامل

Hemodynamic and cellular response feedback in calcific aortic valve disease.

This review highlights aspects of calcific aortic valve disease that encompass the entire range of aortic valve disease progression from initial cellular changes to aortic valve sclerosis and stenosis, which can be initiated by changes in blood flow (hemodynamics) and pressure across the aortic valve. Appropriate hemodynamics is important for normal valve function and maintenance, but pathologi...

متن کامل

Smad2-dependent glycosaminoglycan elongation in aortic valve interstitial cells enhances binding of LDL to proteoglycans.

OBJECTIVE Calcific aortic valve disease is a progressive condition that shares some common pathogenic features with atherosclerosis. Transforming growth factor-β1 is a recognized mediator of atherosclerosis and is expressed in aortic valve lesions. Transforming growth factorβ1 stimulates glycosaminoglycan elongation of proteoglycans that is associated with increased lipid binding. We investigat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2018